a2 United States Patent
Bakalash et al.

US009082196B2

US 9,082,196 B2
Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54) APPLICATION-TRANSPARENT
RESOLUTION CONTROL BY WAY OF
COMMAND STREAM INTERCEPTION

(71) Applicant: Lucidlogix Software Solutions, Ltd.,
Netanya (IL)

(72) Inventors: Reuven Bakalash, Shdema (IL); Yoel
Shoshan, Haifa (IL); Offir Remez, Hod

HaSharon (IL)

(73) Assignee: LUCIDLOGIX TECHNOLOGIES
LTD. (IL)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 294 days.

(21) Appl. No.: 13/789,518

(22) Filed: Mar. 7, 2013

(65) Prior Publication Data

US 2013/0176322 Al Jul. 11, 2013

Related U.S. Application Data

(63) Continuation-in-part of application No. 13/437,869,
filed on Apr. 2, 2012, now Pat. No. 8,754,904, and a
continuation-in-part of application No. 12/229,215,
filed on Aug. 20, 2008, now abandoned.

(60) Provisional application No. 61/609,268, filed on Mar.
10, 2012, provisional application No. 61/747,630,
filed on Dec. 31, 2012.

User experience

BOSE ~ -~ f v v v s s s v s s s s e s s v s e s

Fare ~{-cvinvannninnvnnnnnnvancns v v gatt

Bearab/e e a e e v e e e ‘(\&“‘\\ e v e e ..§“ i e e e e e e e s

(51) Int.CL

GO6T 1/20 (2006.01)
GO6T 15/00 (2011.01)
(52) US.CL
CPC oo GO6T 1/20 (2013.01); GO6T 15/005

(2013.01); GO6T 2210/36 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,099,020 B1* 82006 Toriyamaetal. ........... 358/1.13

8,294,714 B1* 10/2012 Bakdashetal. ... ... 345/428
2002/0140992 Al* 10/2002 Konagaya ....... ... 358/461
2005/0083327 Al* 4/2005 Noyle ... ... 345/419
2005/0086669 Al* 4/2005 Boydetal ... 719/328
2012/0019552 Al* 1/2012 Schildermansetal. ...... 345/619
2012/0169736 Al*  7/2012 Wellsetal. ................. 345/428

* cited by examiner

Primary Examiner — Maurice L McDowell, Jr.

(74) Attorney, Agent, or Firm — ISUS Intellectual Property
PLLC

(57) ABSTRACT

A method for controlling image resolution in graphics sys-
tems at runtime is provided. In use, the stream of commands
and Shaders of the running application is intercepted and
analyzed at run time. In the event that an on-the-fly change of
resolution is required, the change is made by modification of
the Shader assembly code or of the graphics library com-
mands.

12 Claims, 12 Drawing Sheets

Z

%,
%,
%,
wpoensessssosed

Ynnrarnsrsrnssgy

—
S

Region of
playobility

oo

'/
2

Threshold 1

Threshold 2

Power consumption



US 9,082,196 B2

Sheet 1 of 12

Jul. 14, 2015

U.S. Patent

uolydwnsuod Jamod 2 proysaiLy T ploysal

///////////////
o
///éﬁ////tl//?
-
//////1
. 7////
~ a|qnipnag
, .
m ?////f///z/
| s
AujiqoAof W }
| 1 N
fo uoiba 3 -
m 4//9////
| o
| s
| /////1///
}
ASS
e O N T =
doudiadxa Jos




US 9,082,196 B2

Sheet 2 of 12

Jul. 14, 2015

U.S. Patent

(9)

uolilnjosay

oled sweldq

uolilnjosay

uondwnsuod 1amod

“uonndwnsuos Jjamog

(e)

oled sweldq

uondl.unsuo:) JO9MOd



US 9,082,196 B2

‘€ *814

Sdd (013

N
i

Sheet 3 of 12

Jul. 14, 2015

U.S. Patent

P
%,
“

vt atrs ws o,
K
%,
“%

%
©

P

%,
%,
e

rns

vt orn ers

crts wer ior

Miqeheld

—
[ep]
s

crts
L

ploysaiyl
olweuAg



US 9,082,196 B2

Sheet 4 of 12

Jul. 14, 2015

U.S. Patent

uoIINjosas a8ew|

'Vt 814

Z ploysaiy ]

I ploysaiy

AupiqeAeld



US 9,082,196 B2

Sheet 5 of 12

Jul. 14, 2015

U.S. Patent

IR\ S

191}IPOIA 5p03
Japeys pue
puewiwio)

//////////////////ﬂ////////////d

%
rrisrecery

e

e ey

.w//
NEFISENT

¥ N
§ NS
{ 0J1u0 )
{ _ ) is o8  Aouspuadag
{ uonnossy §
3 N BWEILIRIU|
e Ry
9z W

R E———
i9zhjeue
wealss

V/////////////////////////////ﬁ

¥

N
N
W
Ry

i

N

)

Jordaouaru|

€T

SIPDYS PUD SPUDWILLIOI
saiydp.ab Jo wnaiis

gy 314

§

§

3 Januq

3 !

3 NdS S AOPUSA
§ 0 el SN

m AR .

3

Jaiyipow
b3

§ uolnjosal
§ e JlweuAq

K

WL S A s AR AR SR SRS KA A A A R A

NdS

A0 DO NN DN N NN WO O N DN NN AN AN NN DN 0Ny

Rt N‘,_.m‘_o__._
solydesn

4

uolieo|ddy

Ndd

T 00 D00 OO DR DNNK NN AN A R KK NN NN AN R e

T s Y, S YA A A K, VA, S K A S A A, A T (s S YA, Y T A A A S Y



US 9,082,196 B2

Sheet 6 of 12

Jul. 14, 2015

U.S. Patent

"0t "814
U+ aweJd I+ aweld ¥ sweld
= = =
see 3 eee o) <
/// i .:..,a..
N 198401
2UNXAL N 2.4n3xa} = Japuay
~
poay N poay 2ILM
N = :
////
Nl
w m 324Nn0Sa.4 2inixa|:
H §
} §
Aiowaw Ndo
SN




US 9,082,196 B2

Sheet 7 of 12

Jul. 14, 2015

U.S. Patent

‘av 84

7 924nosay

Z 224n0saJ 03 DIDP I
uo1IDINJJDI Wiiofiad
T 924n0saJ wo.f p1op ppay

Y
P Y

ey fSEY N

NI
Ry oS
7///54%’ ¥

€ T 924n0say

"UMOP-53|eds
uo1n|osad Jo sadueyd dlweuAq
‘uoniedijdde payipow uoiIN|osay *d

7 924nosay

Z 224n0saJ 03 DIDP I
uo1IDINJJDI Wiiofiad
T 924n0saJ wo.f p1op ppay

SNy
Sroomes™ /”
N N

ey ASER

§ el
Boneee®

)

T 924n0say

UOoI3N|0SaJ JO UMOP-3|eds Paxid
‘uoljesijdde paipow UoIN|OS3Y *q

7 924nosay

Z 224n0saJ 03 DIDP I
uo1IDINJJDI Wiiofiad
T 924n0saJ wo.f p1op ppay

FENG
”/////4»0 /”

N
w 1/1////”
L

)

) 3 ~
ey NSEY e

T 924n0say

uonesijdde aanen ‘e




US 9,082,196 B2

Sheet 8 of 12

Jul. 14, 2015

U.S. Patent

'q 814

aujpwWIL

O

O O

N
§,

)

\O.w,\\v

Hpjdsip

Q =] O —

weuq padejaq weuy padejag

AN

Y

awn.i4 Aoydsia T
= (asnD 152g)
Z awiyy asuodsay

Z induy
$,.43sN

~

sawini4 Apbidsig z

= (aspD 15io0/)
T W} asuodsay

T nduj
s,dasn

(44) soweyy
paAejdsip
19)4nq 014

(49) soweyy
pajessuss

1agnq deg



US 9,082,196 B2

Sheet 9 of 12

Jul. 14, 2015

U.S. Patent

‘9 '814
Se| ssauanisuodsay € ploysaJyl Z PloysaJyl T ploysaJyl
% N
VO& ///
70 //
&0«\ N
AN
™
///
.W\V.O ///
KN
(4 AN
\V\Q ///
N.\\Q, //
.\.0 /
(% N
RN
N
% ////
70 //
AN
////
RN
N
AN

Miqeheld



US 9,082,196 B2

Sheet 10 of 12

Jul. 14, 2015

U.S. Patent

60/

‘£ 814

uondwnsuod
Jamod

904

sJoloed
AjigeAe|d snlpy

sJ031oe}
AljgeAeid pue &
Joamod jo sisAjeuy

J0109(|02 eje(d

804 £0.

y3ippeq
S0z
awn
 peojiassy
0L
awn Se|
.~} 9suodsay
€0L
uon
§  -hjosay
c0L
a1ey
. awedd
L0z




US 9,082,196 B2

Sheet 11 of 12

Jul. 14, 2015

U.S. Patent

UOIIN|OSBUI"SA
Sdiyospeil  f .. gog

e

A

« EISP Sdd =1endjed

%

uolin|osal

pue Sdd isnlpy

e
RN

_ATBipoeg o
238 BWeRS

.,s,,.,“,///
~PBueyd 9 m,/oJ//

'suod imd

e

snlpy

[45:]

wappeq

N

o

ejap "SUGS IMd
€08 ~{ palisap aie|ndje)

N
Z.s..s“;///

Wi ysiy 3e Jo e

s

/
T
3

o S
~"UO SUIPBO| ™
0.4 Sd4 195 N ~ag1asse mf.mm%,.}ﬁ// 208

sJ03oe) "gAeld pue
L08 ~} 'suodumd Alanp

awely

.

a|qeAe|d

.y

S

IXaU JOJ HEM

et

N

AU

BN
€18




U.S. Patent Jul. 14, 2015 Sheet 12 of 12 US 9,082,196 B2

1 sec.

1 sec.

g .

. ?,,,,,,,’5”/ O
//’2//% 5 LI,

B /// ? e

i
o g,

T,
i 73 @

e Y
/IIIIIIII ”

»

e

%
B,

/11111111/

7
g K
ALLLLLILELS K .
b o Y )
P rrtrtestes. A i
7R i

~3
% (s o

(A)

(C)
Fig. 9.

(B)

7////////7

ey s

Y. & o W .
A B ’IIIIIIIIII /,/ﬁ "
) )

Vi,
pessaseany
i

Y 4

7
’//g//////////

_—— sy
S 2

e panrrannrry,

L A
%t ernrrrrres

<

grannnrriity

/////’///////A/[’

4

0 sec.
0 sec.




US 9,082,196 B2

1
APPLICATION-TRANSPARENT
RESOLUTION CONTROL BY WAY OF
COMMAND STREAM INTERCEPTION

CROSS REFERENCE TO RELATED CASES

The present application claims priority to the U.S. Provi-
sional Application No. 61/609,268 filed Mar. 10, 2012
entitled “Dynamic Resolution Rendering by Way of Com-
mand Stream Interception,” and to the U.S. Provisional
Application No. 61/747,630 filed Dec. 31, 2012 entitled
“Playability-Aware Power Conservation Management of
Graphics Systems.” It is a Continuation in Part (CIP) of the
following U.S. application Ser. No. 12/229,215 filed Aug. 20,
2008 entitled “Multimode Parallel Graphics Rendering Sys-
tems and Methods Supporting Task-Object Division,” and
Ser.No. 13/437,869 filed Apr. 2, 2012 entitled “Virtualization
Method of Vertical-Synchronization in Graphics Systems;”
each said patent being commonly owned by LucidLogix Ltd.,
and being incorporated herein by reference as if set forth fully
herein.

FIELD

The present invention relates generally to the field of com-
puter graphics rendering, and more particularly, ways of and
means for improving the performance of rendering processes
supported on GPU-based 3D graphics platforms associated
with diverse types of computing machinery.

BACKGROUND

Power conservation management is vital in graphics sys-
tems operating off battery or other such exhaustible power
source. Specifically, the top video game applications of con-
temporary gaming industry are very demanding in terms of
graphics processing power. Those applications are typically
running on a desktop system at a high frame rate of 50-300
FPS, assisted by powerful discrete GPUs.

The discrete GPU is an extreme power consumer in com-
puter systems, therefore in off battery systems it is mostly
replaced by an integrated GPU. An integrated GPU is much
less power hungry. However, the increasing use of iGPUs in a
battery powered devices, such as notebooks, tablets and
mobile phones, calls for optimizing iGPUs power consump-
tion to achieve better power efficiency. This is particularly
important for real time graphics applications, such as video
games, because there is a great need to make these applica-
tions playable on the above mentioned battery power devices.
For that reason, the embodiments of present invention target
primarily integrated GPUs, although it is applicable to dis-
crete GPUs as well.

Integrated GPU (iGPU) is a graphics processor integrated
onto a motherboard or right onto the CPU die as the graphic
element of multicore, together with one or more CPU cores.
Integrated GPUs utilize a portion of a computer’s system
memory rather than dedicated graphics memory. Integrated
GPUs are, in general, cheaper to implement than discrete
GPUs, but are typically lower in capability and operate at
reduced performance levels relative to discrete GPUs. Inte-
grated GPUs are used in embedded systems, mobile phones,
personal computers, workstations, and game consoles. More
than 90% of new desktop and notebook computers have inte-
grated GPUs, which are usually far less powerful than those
on a dedicated video card. Computers with integrated graph-
ics account for 90% of all PC and notebook shipments. These
solutions are less costly to implement than dedicated graphics

10

15

20

25

30

35

40

45

50

55

60

65

2

solutions, but tend to be less capable. Historically, integrated
GPUs were often considered unfit to play 3D games. How-
ever, modern integrated graphics processors are capable to
struggle with the latest games. iGPUs like the Intel’s HD
Graphics 3000 and AMD’s Fusion IGPs have improved per-
formance that may match cheap dedicated graphic cards, but
still lag behind the more expensive dedicated graphics cards.
While older platforms had the IGP integrated onto the moth-
erboard, newer platforms (Intel Core i series and AMD
Fusion) integrate the GPU right onto the CPU die.

Gamer’s satisfaction is a major factor in usage of video
gaming products. [tis based on the user’s experience through-
out the gaming session, which in turn depends on the frame
rate, image resolution, responsiveness and on minimization
of dull waitings (such as loading times). Unfortunately, the
user’s experience is very often jeopardized by the need to
manage power consumption, by automatically lowering the
frame rate, resolution or backlight for the sake of power
reduction, but deteriorating the playability of the game. We
define playability as the capability of a graphic’s system to
deliver an adequate player’s experience in video games,
despite power reduction. Player’s experience is affected by
several factors: frame rate, image resolution, responsiveness
lag, asset loading time, and image quality. Playability is about
delineating the limits for each one of those factors, and man-
aging the power conservation in a manner that user’s experi-
ence does not drop below the defined threshold. A region of
playability is shown in FIG. 1, which is between the best and
the bearable user’s experience. The lowest limit of playability
forces the lowest allowed power consumption, Threshold 1,
preventing the deterioration of user’s experience.

In prior art there are various ways to manage power con-
sumption in graphics. All of them are based on manually
activated transition to power saving mode, or on automatic
transition to power saving mode triggered by frame duration,
or by battery state. None is driven by a trade off of the power
saving and playability of the game application, as in the
present invention.

Typically, prior art’s power consumption management
solutions are driven by lowering performance, clock speeds
and frequencies, refresh rate or adjusting screen brightness.
According to Wyatt et al. in US 2008/0143729, a refresh rate
of graphics subsystem is adjusted for power saving purposes,
only under power saving mode, uncoupled to user experience.
Lin et al., in US 2003/0233592 teaches two embodiments of
power saving for graphics systems, one by disabling the
graphics system for some gating time, and second by reduc-
ing the clock frequency of graphics rendering engine by a
calculated clock-scale-factor. Both are triggered by a mea-
sured frame duration. Fan et al., US 2009/0295794, discloses
power saving in GPU by disabling some of the stream pro-
cessors, when the graphics processing unit is in the power-
saving mode. Wyatt et al. in US 2012/0206461 teaches a
self-refreshing display device operated in a self refresh mode
for power saving. The graphics controller coupled to the
display device is set in one or more power saving states.
Woo-Up Kwon in US 2012/0280921 discloses a method for
controlling screen brightness for power conservation, where
the screen touch action is sensed. Hassan Azar et al., US
2010/0123725, disclose a method of adjusting pictures pre-
viously generated by a discrete GPU, by an integrated GPU.
The adjustment may be used in conjunction with power sav-
ing techniques to maintain the image quality when display
backlighting is reduced. The target of Hassan’s invention is to
adjust video images while minimizing the impact on graphics
processing performance. However, it is not automatically
aware of the playability limits of gaming applications.



US 9,082,196 B2

3

Huangetal., US 2011/0157191, handles situations where a
user operates a graphics intensive application from a rela-
tively inexhaustible power source (such as a wall outlet oper-
ating on alternating current). When the source becomes
unavailable, due to an energy blackout, or travel, etc, instead
of'terminating the application or operating off the exhaustible
DC power source, Huang teaches how to automatically limit
the frame rate of an application executing in a discrete graph-
ics processing unit operating off battery or other such
exhaustible power source. By automatically limiting the
frame rate, the rate of power consumption, and thus, the life of
the current charge stored in a battery may be extended.
Another embodiment of Huang allows for the more effective
application of automatic power conservation techniques dur-
ing detected periods of inactivity, by applying a low power
state immediately after a last packet of a frame is rendered and
displayed. By no means Huang’s invention takes care for
playability of a gaming application.

The white paper “Dynamic Resolution Rendering” by
Doug Binks of Intel, describes how developers can dynami-
cally vary the resolution of their rendering instead of having
a static resolution selection. Their dynamic resolution render-
ing uses a viewport function to constrain the rendering to a
portion of an off-screen render target, and then to scale the
view. This is ported to the application as part of its customized
code, or used by graphic application developers for their
rendering. Applications without customized porting cannot
use the dynamic resolution rendering.

All the above mentioned methods and systems: adjusted
refresh rate, gated disabling of a graphics system, reduced
clock, reduced screen brightness, dynamic resolution render-
ing, or picture adjustment, all are targeting power saving.
However, no prior art exists for an application transparent
playability, where the monitoring of frame rate or image
resolution, for an improved power consumption, improved
user experience or for another purpose, can be implemented
in any gaming application. In prior art there is a need to port
a specialized code, prior to running the application (such as
described in “Dynamic Resolution Rendering” by Doug
Binks of Intel), as part of the application.

Specifically, the dynamic resolution rendering in prior art
uses a viewport function to constrain the rendering to a por-
tion of an off-screen render target, and then to scale the view.
This is ported to the application as part of its code.

Evidently, applying power saving method in a real time
graphics application without being aware of playability,
would eventually deteriorate user’s experience.

SUMMARY AND OBJECT OF THE PRESENT
INVENTION

The present invention provides a method and system for
applying automatic power conservation technique for video
games or comparable real time graphics applications, while
keeping the user’s experience above a defined minimal level.
The limits of a bearable user’s experience are defined as
playability. The power conservation is managed such that the
playability is always kept.

The playability awareness assists in keeping the gamer’s
experience within tolerable limits, while managing the power
consumption. The main factors controlling power consump-
tiom consist of frame rate, image resolution, image bright-
ness, and responsiveness. Each one of these factors can poten-
tially harm the playability. Moreover, since there is a mutual
dependency among all factors, when a factor is monitored for
power consumption, all other factors must be simultaneously
monitored, such that playability is kepth within its predefined

10

15

20

25

30

35

40

45

50

55

60

65

4

boundaries. The image resolution factor plays important role
in this invention due to its transparency to application,
dynamicy and automatization, without a prior customized
porting to the application. Such a method would run trans-
parently and simultaneously with the gaming application,
dynamically trading off the resolution for frame rate.

The present invention addresses the great need for a true
runtime playability-aware power saving method, specifically
for integrated GPUs (iGPUs) which play central role in bat-
tery powered devices (notebooks, tablets and mobile phones).
Nevertheless, the current invention can be applied to discrete
GPUs as well.

Another need addressed by the present invention, non-
related to power saving, specifically for a non-exhaustible
source powered graphics devices, is an increase of frame rate
by using dynamic resolution method. For such a source of
power, the improved user’s experience (by increased FPS), is
typically more important than saving power.

BRIEF DESCRIPTION OF DRAWINGS

For a more complete understanding of practical applica-
tions of the embodiments of the present invention, the follow-
ing detailed description of the illustrative embodiments can
be read in conjunction with the accompanying drawings,
briefly described below:

FIG. 1. User’s experience vs. power consumption

FIG. 2. Mutual dependencies between power consump-
tion, resolution and frame rate.

FIG. 3. Playability regions of video games as a function of
frame rate.

FIG. 4A. Playability regions of video games as a function
of image resolution.

FIG. 4B. The virtualization layer and its location within a
graphics system.

FIG. 4C. The principle of inter-frame dependency.

FIG. 4D. The capability to sample from one resolution and
write to different resolution.

FIG. 5. A case of worsening responsiveness by delaying a
frame.

FIG. 6. Playability regions of video games as a function of
responsiveness lag.

FIG. 7. A feedback based mechanism for managing the
playability-based power conservation

FIG. 8. Flowchart of playability driven power manage-
ment.

FIG. 9A. An example of a six stage scene motion to be
performed in 1 Sec.

FIG. 9B. Scene motion displayed at a high rate of 60 FPS

FIG. 9C. The same scene motion displayed at a low rate of
6 FPS. The display result is exactly the same as in FIG. 9B, but
there is energy saving.

DESCRIPTION OF THE PRESENT INVENTION

Embodiments of the present invention provide a method
and system for applying automatic power conservation tech-
nique in graphics system running video games or comparable
real time graphics applications, while keeping the user’s
experience above a defined minimal level. The limits of a
bearable user’s experience are defined as playability. The
power conservation is managed such that the playability is
always kept.

The current invention refers primarily to one of the most
demanding real time graphics applications, video games,
however it applies to other real time applications as well. The
playability awareness assists in keeping the gamer’s experi-



US 9,082,196 B2

5

ence within tolerable limits, while managing the power con-
sumption. While the power consumption is managed for sav-
ing, as depicted in FIG. 1, the user’s experience varies
between the ‘best’ at the high end, through “fair’, and down to
the ‘bearable’, which is the lowest allowed experience.
According to the FIG. 1, the level of experience can be
expressed in terms of power consumption, in such a way that
only a given zone of the user’s experience is considered as
playable. Out of this segment the playability is getting dete-
riorated, preventing the gamer from enjoying the game. In
order to manage a playability aware power saving, the
extreme allowable limits must be defined, and not to be
crossed. Two such possible power consumption limits are
defined in FIG. 1 as Threshold 1 and Threshold 2. Threshold
1 is very sensitive, because even a slight slip in power con-
sumption may kill the playability of the game.

The main playability factors of video game consist of:
frame rate, image resolution, image brightness, and respon-
siveness, all of them are restricted by power conservation.

FIG. 2 demonstrates the mutual dependencies between
frame rate, image resolution and power consumption. For
clarity a linear function is assumed, whereas in reality the
function is not necessarily linear. As shown in FIGS. 2a4 and
2b power consumption is directly proportional to frame rate
and to resolution, respectively. Frame rate and resolution are
inversely proportional to each other, as depicted in FIG. 2c¢.
FIG. 2d shows the mutual proportion of all three of them. A
virtual plane 24 is created, across which a trade off between
the frame rate and resolution takes place. E.g. if the frame-
per-second (FPS) drops under 15 FPS causing laggy and
unresponsive player experience, it can be raised back by
lowering the image resolution, still keeping a constant power
consumption level.

Frame rate is a major tool for controlling the power con-
sumption of video games. It is very common in a game, to
have different scenes in which the frame rate changes dra-
matically. Even in a single location, when the user turns the
mouse to look around, looking in one direction can resultin a
high frame rate, while changing the view can result in a low
frame rate. As seen in FIG. 3, typically, a frame rate below 15
FPS makes those games unplayable. Between 15 FPS and 30
FPS they are only marginally playable. The main reason for
this is a non smooth and annoying animation rate, generating
user’s impression of lack of stability. Fortunately, the frame
rate can be improved by trading it off with image resolution.
By rendering at a lower resolution, we can balance the frame
rate. Even though the visual quality decreases, the overall
experience significantly improves, upgrading from “non
playable” to “marginally playable”, from “non playable” to
“playable” or from “marginally playable” to “playable”. This
tradeoff can be done dynamically during game’s runtime.

The thresholds 31 and 32 of FIG. 3 are dynamic thresholds,
meaning that the threshold value can be automatically modi-
fied in the course of application. The threshold 31 represents
the lowest frame rate allowable at a given time, while con-
serving the playability. This threshold is tightly related to
power conservation. Its value can be dynamically varied
according to the temporal battery level of the mobile device.
When the battery is fully charged a high FPS can be afforded,
but when battery goes down, a lower FPS (until the minimum
playable FPS) should be set. Meaning, that the level of user’s
experience, from best, via fair, to bearable, can be a function
of the battery level. E.g. a 99% charged battery can allow 70
FPS, while 20% allows only 30 FPS.

Despite the fact that the threshold 31 is on the edge of a
non-playable region, in some cases the threshold can be
moved even down without violating the playability, but sav-

10

15

20

25

30

35

40

45

50

55

60

65

6

ing power. This is doable when the scene doesn’t change, aka
temporarily there is a slow or no motion at all. Such a case is
illustrated in FIG. 9. FIG. 9A shows an example of a sequence
of'a 6 stage motion that is scheduled to occur in a given time,
1 second. In FIG. 9B the sequence is played at a high, well
playable section, of 60 FPS. Each stage repeats on itself
several times, without actually changing the displayed image.
FIG. 9C plays the same sequence during the same given time
of'1 second, but at a very low rate of 6 FPS. By reducing the
FPS an energy is saved, while. The threshold 31 slipped deep
into the non playable section reducing drastically the FPS,
though the display was preserved and the playability wasn’t
hurt.

Such a temporary lowering of the dynamic threshold is
made possible only when the amount of motion in the scene is
very low. The measurement of motion can be done by parsing
and analyzing transformation matrices representing objects,
cameras and mouse transformation. Another way of detecting
slow or null motion is by comparing images of consecutive
frames.

Threshold 32 represents the highest frame rate at a given
time. This threshold is not necessarily related to power con-
sumption, however it allows to limiting the high bound of
FPS. The FPS dynamic threshold policy can be predefined by
the user or by the mobile vendor, by means of the dynamic
thresholds 31 and 32.

Image resolution, stands for pixel count in digital imaging.
Resolution describes the detail a video game’s image holds.
The resolution affects directly the playability, as shown in
FIG. 4A: two resolution thresholds are shown, delimiting the
marginally playable and non-playable regions, in regard to
resolution. The application can be run only within the value of
resolution allowed by the thresholds. The resolution also
affects power management and the power consumption. The
higher resolution the higher power consumption. Therefore
the resolution, similarly to the way it is done for frame rate,
can be used to adjust power consumption. Resolution, being
traded for frame rate, can assist in keeping a given level of
power consumption, as shown in FIG. 2D.

The principle of the dynamic thresholding applies to image
resolution as well, and at least one threshold is defined. In
FIG. 4A two thresholds are shown. The threshold 41 contrib-
utes to power conservation by setting the lowest resolution
available at a given time while still preserving the playability.
Similarly to the FPS lower threshold, its value can be dynami-
cally adjusted according to the temporal battery level of the
mobile device. When the battery is fully charged the highest
resolution can be afforded, but when battery goes down, a
lower resolution contributes to power save. As in the FPS
case, the level of user’s experience, from best, via fair, to
bearable, is effected by image resolution as a function of the
battery level. The highest dynamic threshold 42, on the other
hand, allows to control the highest bound of image resolution,
with no relation to power saving.

The resolution control task of the present invention is car-
ried out by a virtualization layer, decoupling the resolution
status of the application from the frame buffer. Such a virtu-
alization layer is shown in FIG. 4B as Dynamic Resolution
Modifier 425. The resolution is virtualized during the frame
generation, getting its final physical value in the back buffer.
The result is a generic mechanism, decoupled from native
application parameters, and benefiting mostly the laptops,
tablets and mobiles devices.

The stream of commands and shaders of the running appli-
cation is analyzed at runtime. If a change of resolution is
needed, then the on-the-fly resolution change is made by
modification of relevant graphics library commands and/or



US 9,082,196 B2

7

by modification of Shader assembly code. Few examples of
the modified commands are: viewport functions (OpenGL:
glViewport, DirectX: SetViewPort/SetViewPorts), render
targets choosing functions, clear functions, stretch functions
and so on.

The uploaded Shader code is modified on-the-fly, to com-
pensate for the changed resolution. For example, a modifica-
tion of a Shader code to compensate for the smaller rendering
area in both the drawing area and the sampling area. The
original Shader code before modification:

132:CreatePixelShader: D3DDisassemble BEFORE Patching Done.
ps_5_0

del_globalFlags refactoring Allowed

del_sampler s0, mode_default

del_sampler s1, mode_default

del_resource_texture2d (float,float,float,float) tO
del_resource_texture2d (float,float,float,float) t1
del_input_ps linear v1.xy

del_output 00.xyzw

del_output ol.xyzw
sample_indexable(texture2d)(float,float,float,float) 00.xyzw,
v1.xyxx, t0.xyzw, sO
sample_indexable(texture2d)(float,float,float,float) o1.xyzw,
v1.xyxx, tl.xyzw, sl

ret

And the modified (patched) Shader code:

139:CreatePixelShader: D3DDisassemble AFTER Patching
Done.140:**********************

ps_5_0

del_globalFlags refactoring Allowed

del_constantbuffer ¢b13[17], immediateIndexed
del_constantbuffer cb12[2], immediateIndexed

del_sampler s0, mode_default

del_sampler s1, mode_default

del_resource_texture2d (float,float,float,float) tO
del_resource_texture2d (float,float,float,float) t1
del_input_ps linear v1.xy

del_output 00.xyzw

del_output ol.xyzw

del_temps 2

mov rl.xyzw, cb13[1].xyzw

mov rl.xyzw, vl .Xyxx

mul rl.xyzw, r1.xyzw, cb13[1].xyzw
sample_indexable(texture2d)(float,float,float,float) 00.xyzw, r1.xyzw,
t0.xyzw, sO

mov rl.xyzw, cb13[2].xyzw

mov rl.xyzw, vl .Xyxx

mul rl.xyzw, r1.xyzw, cb13[2].xyzw
sample_indexable(texture2d)(float,float,float,float) o1.xyzw, rl.xyzw,
tl.xyzw, sl

ret

The patched (modified) and original Shaders can be cached
for optimization with their respective hash values for fast
query.

A special case is the 2D HUD (heads-up display) which, in
contrast to the 3D scene, must not be modified. Rendering the
2D HUD usually takes a small fraction of the overall frame
rendering time, but rendering it in low resolution is very
disturbing to the user. The change of resolution should be
applied to 3D scenes only. The method of selective treatment
of HUD is based on the fact that heuristically it is the last task
in a frame that writes to the Back Buffer. Alternatively an
analysis of Shaders code and constants and/or searching for
specific patterns in the Shader assembly code can indicate on
beginning of the HUD task. Therefore, the detection of heads-
up display is done by accumulating commands and carrying
out an analysis prior to releasing the commands down to the
rendering pipeline.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 4B illustrates the way the stream of graphics com-
mands and shader code is intercepted and manipulated for a
modified resolution. The Dynamic Resolution Modifier 425
breaks down to five building blocks. The Interceptor block is
monitoring the context of the stream. The Stream Analyzer
block analyzes the components and structure of the frame’s
stream, such as in upcoming commands, which resources are
used for input and which resources are used for output, which
shader code is being used for the various stages in the GPU
pipeline, and what is the current state of the 3d device. The
Inter-frame Dependency block tests for resource dependency,
which is important to making sure that no artifacts appear due
to situations where rendering depends on resources that were
updated in preceding frames. Inter-frame dependency is illus-
trated in FIG. 4C. At the first frame task_i creates and changes
a resource (render target) which is repeatedly used (as a
texture) in later frames; by task_j in the successive frame, and
task_k some frames later. If the resolution control changes,
the resource written by task_i, results in reduced size of the
texture, therefore a corresponding change must be applied in
subsequent frames, to prevent artifacts.

The capability to sample from one resolution and write to
different resolution is exemplified in FIG. 4D. A non limiting
example is shown of a task reading one texture resource,
processing and writing into a second texture resource. (a)
Native application, without resolution change. Both texture
resources are of the same original resolution. (b) A resolution
modified application. Both resources are of the same reduced
resolution. (¢) During the time collapsed between the creation
of the first resource and processing and writing to second
resource, changes of resolution may occur. The task must
scale the resolution accordingly. It must be pointed that its not
always reading from one resource and writing to one
resource, as in the above example. It can also be read from few
resources and write to one resource, or read from one and
write to a few resources, or read from a few and write to a few.

Back to FIG. 4B, the inputs from blocks 421-424 assist the
Resolution Control 426 forcing the desired resolution. The
execution is given to the block of Command and Shader code
Modifier. The resolution change is done by changing 3d API
(aka graphics library) commands, especially (but not only)
viewport functions and modification of Shader code, or
changing the GPU device state.

During the frame, for each texture resource, a rendering
resolution must be determined. This desirable resolution may
be different from the original resolution as coded by the
‘native’ application. The resolution reduction in the texture
resource is done by modifying the 3D API commands to
render only part of that resource. For sampled resources that
have been altered before, and therefore do not keep the origi-
nal ‘native’ resolution any more, the sampling area must be
recalculated properly. This occurs for all of the resources
along the frame. However, toward the end of the frame the 2D
HUD is usually the last element to be rendered. For the sake
of visual quality, the HUD must be rendered in the original
‘native’ resolution. Therefore the HUD must be detected, and
the entire pre-HUD image must be up-scaled to the entire
resource size (the 3d scene before the HUD is drawn). The
high quality up-scaling greatly improves the visual quality.
From this point, the rendering goes on in full resolution.

Detection of HUD is done by accumulating 3D API com-
mands to some degree (e.g. 30-40 commands) carrying out a
back detection of the last command. The number of Back
Buffer output tasks is coherent between successive frames
(Back Butfer writes locality). So the HUD task can be in most
cases spotted. Practically, the frequency of errors is extremely
low, so in case of error, a frame can be dropped without being



US 9,082,196 B2

9

watched by the user. In exceptional games, where the men-
tioned frame coherency isn’t strong enough, shader analysis
methods are used, and the shader code is searched for known
patterns to identify the HUD task beginning.

The resolution control block 426, as shown in F1G. 4B, gets
complete information regarding the intercepted stream of
commands and shader code from the Interceptor, the Stream
Analyzer and the Inter-frame Dependency Analyzer. The
resolution is decided upon for the next rendered frame. The
main parameters are needed:

1. Target Frame Rate—This is the Frame Rate that the

mechanism aims to achieve.

2. Maximum allowed quality hit—defining the reduction
grade of the resolution. Lowering the resolution too
drastically will hurt the user experience. For example,
reasonable value is 0.5, which means that in our attempt
to reach the target Frame Rate we allow to change the
resolution to contain a quarter of the pixels of the Native
game resolution.

In real time, the mechanism receives the following infor-

mation:

1. GPU Load—The current and past GPU load

2. CPU Load—The current and past CPU Load

3. Frame Rate—The current and past Frame Rate

By looking at both the GPU Load and the CPU Load we
can understand if the Frame Rate is GPU bound.

Ifit is not GPU bound, the dynamic resolution changing
mechanism is not effective, and the visual quality
shouldn’t be reduced.

If it is GPU bound, the dynamic resolution changing
mechanism is effective, and the resolution would be
modified to improve the user experience.

Combined with the GPU load, the current and preceding
Frame Rate is considered, for the reduction/increase of
currently used resolution.

Overshooting might lead to instability: too high Frame
Rate than targeted, causing a decrease of resolution.
Then, below the targeted Frame Rate causing an
increase of resolution, etc. This undesired behavior hurts
the user experience.

It is prevented by the following logic:

If current Frame Rate and target are close to each other
by some delta, the resolution is not changed.

The threshold for increase resolution is different from
the threshold for decrease resolution

A poor responsiveness to gamer’s inputs is another out-
come of a lowered frame rate in video games. A good inter-
active gaming requires precise timing or fast response times
ongamer’s inputs. The lower FPS, the higher input lags. Long
input lags deteriorate the responsiveness of real-time graphics
systems, interfering with games which require precise timing
or fast reaction times. Good responsiveness is achieved by
minimizing input lags. Low frame rate has a negative effect
on game’s responsiveness, due to application’s lagged
response on gamer’s input. Poor responsiveness tends to dete-
riorate the playability. FIG. 5 exemplifies a case of worsening
responsiveness by delaying a frame. Lowering FPS by frame
delay is done in prior art, e.g. by Huang et al., in US 2011/
0157191. The worse case is shown on user’s input 1, which
comes at the beginning of a display frame 1, and affects the
display in display frame 3, causing lag of 2 frames. The best
case is exemplified on user’s input 2, initiated just before the
start of displayed frame 3, and affects the image in display
frame 4, causing a single frame lag. Single frame lag is
normal. However, double or higher frame lag, without being
aware to application playability may cause a deteriorated
responsiveness to user’s input. Poor input lags deteriorate the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

responsiveness of real-time games which require precise tim-
ing or fast reaction times. FIG. 6 shows how a responsiveness
lag may affects the playability of a game.

Another source for poor responsiveness, other than input
lags, is the game assets loading times. Graphics data, such as
texture database, must be downloaded to GPU at the begin-
ning of each game, and from time to time during the game. If
an automatic decrease in the frame rate applies to the game
with no application awareness, the user’s experience is
impaired by long loading times, because of the non-selective
decrease of a frame rate, across the application. The approach
to the loading period must be different than that of the rest of
the game. While the rest of the game is slowed down by a
decreased FPS and playability is still kept, the loading, which
is a non playable intermission repeating as dead intervals
along the game, must be speeded up in order to keep play-
ability. When the FPS is artificially kept down, and a loading
is detected, the frame rate must be returned to its non
restricted value, or set to some high value, until the loading
finalizes.

The backlight of the display may be dimmed to reduce the
power consumption. In such a case the visual quality of the
image might be harmed. In order to maintain the perceived
visual quality of the displayed image, the contrast of the
image may be adjusted at the time of converting the video
image to RGB color space. However, this backlight/contrast
ratio must be managed for a playable image quality.

FIG. 7 illustrates the mechanism for managing the play-
ability-based power conservation. Basically itis a closed loop
feedback mechanism in which the power consumption is
sampled at the beginning of each frame, and if needed, it is
adjusted by modifying the playability factors of frame rate,
resolution and backlight. The other playability factors of
responsiveness and asset load time, affected directly by the
change of frame rate, must be taken into account for playabil-
ity, in setting the new level of FPS. The Data Collector 707
reads in the Power Consumption status 706, and gathers the
status of all playability factors: frame rate 701, resolution
702, response lag time 703, asset load time 704 and backlight
level 705. The Analysis function block 708 analyzes the cur-
rent power consumption against the conservation needs,
resulting in the desirable consumption delta. This desirable
delta is generated by appropriate changes by the Adjust box
709, in one of the playability factors: frame rate, resolution or
backlight, or by some combination of two or three of them,
when the responsiveness and asset load time factors are kept
at the proper level.

The playability driven power management of the present
invention is flowcharted in FIG. 8, at the frame level. The
current status of power consumption and playability factors
are querried at 801. If the current frame occurs during game
assets loading 802, then the frame rate should preferable be
set free or set at some high limit, to speed up the dull time of
loading. Otherwise, the power consumption status is used to
calculate the desired delta 803, according to power manage-
ment policy. If no change is needed 804, the flow stops for the
frame, waiting for the next frame 813. Otherwise, we must
decide what factor should be modified, back lighting or frame
rate. If the adjust by back light is taken, the right adjust of
backlight is calculated 812, and checked for playability. If the
resulting image quality is going below playability level, we
switch back to change of frame rate. The frame rate track
starts from calculating the required FPS delta 806. This
change of FPS can be traded off with change of resolution
808. This happens if the required FPS change drops below
playability threshold 807. The final change of FPS is farther
tested for its effect on responsiveness lag 809. If responsive-



US 9,082,196 B2

11

ness is found not playable, another cycle of FPS/resolution
trade off takes place. Finally the FPS and resolution are prop-
erly adjusted, and the playability-based power conservation
system awaits the next frame 813.

What is claimed is:

1. A method for controlling image resolution in graphics

systems at runtime comprising:

providing a computer system having a CPU, one or more of
an integrated or a discrete GPU, a display to display
images, a non-transitory computer readable system
memory and at least one application running on the
computer system that generates at least one of a stream
of graphic library commands and/or shader codes at run
time;

intercepting, analyzing and modifying the stream of graph-
ics library commands and/or shaders codes generated by
the running application at run time;

(1) in the event that an on-the-fly change of resolution is
desired for keeping a user’s experience above a pre-
defined minimal level, changing the resolution by modi-
fication of one or more of the:

a. shader code, or

b. graphics library commands;

(ii) in the event that no change of resolution is desired, not
changing the resolution.

2. The method of claim 1, wherein modified and unmodi-

fied shaders are cached in the memory for optimization.

3. The method of claim 1, wherein modifying the resolu-

tion is limited by at least one threshold, the at least one

15

20

12

threshold selected from: bearable levels of at least one of
frame rate, image resolution, image brightness, responsive-
ness and power consumption.

4. The method of claim 3, wherein any of the thresholds can
be modified in the course of the run time of application.

5. method of claim 1, wherein a low threshold is used for
preserving the application’s playability.

6. The method of claim 1, wherein the shader code is
modified on-the-fly for the desired resolution.

7. The method of claim 1, wherein the change of resolution
is applied to 3D scenes only.

8. The method of claim 7, wherein 3D heads-up displays
may be modified but 2-dimensional heads-up display may not
be modified.

9. The method of claim 8, comprising the further step of
detecting a heads-up display and wherein detection of heads-
up display is accomplished by accumulating commands and
carrying out an analysis prior to releasing the commands to a
pipeline for rendering.

10. The method of claim 8, wherein detection of a heads-up
display is accomplished by detecting the last rendering task in
a frame that writes to a back buffer.

11. The method of claim 1, wherein an inter-frame depen-
dency analyzer is provided to test resource dependency so as
to prevent artifacts.

12. The method of claim 1, wherein the parameters for
changing the resolution includes one or more of: the target
frame rate, power consumption and the maximum allowed
quality hit.



